Maximum Likelihood Estimation for Semiparametric Density Ratio Model
نویسندگان
چکیده
منابع مشابه
Maximum likelihood estimation for semiparametric density ratio model.
In the statistical literature, the conditional density model specification is commonly used to study regression effects. One attractive model is the semiparametric density ratio model, under which the conditional density function is the product of an unknown baseline density function and a known parametric function containing the covariate information. This model has a natural connection with g...
متن کاملApproximating Mutual Information by Maximum Likelihood Density Ratio Estimation
Mutual information is useful in various data processing tasks such as feature selection or independent component analysis. In this paper, we propose a new method of approximating mutual information based on maximum likelihood estimation of a density ratio function. Our method, called Maximum Likelihood Mutual Information (MLMI), has several attractive properties, e.g., density estimation is not...
متن کاملMaximum Likelihood Estimation and Likelihood-ratio Tests
The method of maximum likelihood (ML), introduced by Fisher (1921), is widely used in human and quantitative genetics and we draw upon this approach throughout the book, especially in Chapters 13–16 (mixture distributions) and 26–27 (variance component estimation). Weir (1996) gives a useful introduction with genetic applications, while Kendall and Stuart (1979) and Edwards (1992) provide more ...
متن کاملMaximum likelihood kernel density estimation
Methods for improving the basic kernel density estimator include variable locations, variable bandwidths (often called variable kernels) and variable weights. Currently these methods are implemented separately and via pilot estimation of variation functions derived from asymptotic considerations. In this paper, we propose a simple maximum likelihood procedure which allows (in its greatest gener...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of Biostatistics
سال: 2012
ISSN: 1557-4679
DOI: 10.1515/1557-4679.1372